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Abstract
In accordance with the fact that quantum measurements are described in
terms of positive operator measures (POMs), we consider certain aspects of a
quantization scheme in which a classical variable f : R

2 → R is associated
with a unique positive operator measure (POM) Ef , which is not necessarily
projection valued. The motivation for such a scheme comes from the well-
known fact that due to the noise in a quantum measurement, the resulting
outcome distribution is given by a POM and cannot, in general, be described
in terms of a traditional observable, a selfadjoint operator. Accordingly, we
note that the noiseless measurements are those which are determined by a
selfadjoint operator. The POM Ef in our quantization is defined through its
moment operators, which are required to be of the form �(f k), k ∈ N, with
� being a fixed map from classical variables to Hilbert space operators. In
particular, we consider the quantization of classical questions, that is, functions
f : R

2 → R taking only values 0 and 1. We compare two concrete realizations
of the map � in view of their ability to produce noiseless measurements: one
being the Weyl map, and the other defined by using phase space probability
distributions.

PACS number: 03.65.−w

1. Introduction

Quantization is a procedure which turns the classical description of a physical system into
its quantum description. Given the phase space of the classical description and the Hilbert
space of the corresponding quantum description one often considers only quantization of the
classical dynamical variables.

If the set of dynamical variables corresponding to a given phase space is denoted byF , and
the set of quantum observables associated with a given Hilbert space by E , a quantization (of
observables) is thus a method which assigns to any f in some subset Q of F , a unique Ef ∈ E .
The subset Q depends on the technical implementation of the quantization scheme; it consists
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of those variables for which the procedure can be applied. For each f ∈ Q, the observable
Ef ∈ E obtained by the procedure is called the quantization of the classical variable f .

Quantum observables are traditionally represented as selfadjoint operators, or,
equivalently, spectral measures. Therefore, the existing quantization schemes, such as the Weyl
quantization, produce operators as quantizations. In modern quantum mechanics, however, a
normalized positive operator measure (also called semispectral measure or POM, for short)
is needed to represent an observable. Hence, adopting the modern definition for a quantum
observable, we face the fact that the existing quantization schemes are not conceptually
satisfactory, as they produce only a limited class of observables. It is well known that the
outcome statistics of a typical quantum measurement cannot, in general, be described by a
single selfajoint operator.

The purpose of this paper is to describe and further elaborate the quantization scheme
introduced in [13]. This scheme produces observables (as POMs) which are not determined by
single selfadjoint operators but by sequences of operators. In order to simplify the presentation,
we consider only a particle moving in one dimension so that the phase space is R

2 and the
Hilbert space is L2(R). We mention, however, that the scheme was defined in [13] for a more
general case where the phase space is a locally compact group.

2. The quantization method

The phase space points (q, p) ∈ R
2 represent the (pure) states of the classical system, and

its dynamical variables are given as (Borel) functions f : R
2 → R. Let F(R2) denote the

set of all these variables. The corresponding quantum system is attached by the Hilbert space
H = L2(R), the unit vectors ϕ ∈ H representing the (pure) states of the system and its
observables being given by POMs E : B(R) → L(H). Here B(R) denotes the σ -algebra of
the Borel sets of R and L(H) is the set of bounded operators on H.

Let � stand either for R, or R
2, and let A be the corresponding σ -algebra, that is, B(R),

or B(R2). If E : A → L(H) is a POM and f : � → C a (measurable) function, we let∫
f dE = ∫

f (ω) dE(ω) denote the operator integral of f with respect to E according to
the theory given in [14]. For subsequent use, we need to recall the domain D(f,E) of the
operator

∫
f dE. To this end, for any ψ, ϕ ∈ H, we let Eψ,ϕ denote the complex measure

X �→ 〈ψ |E(X)ϕ〉. Then

D(f,E) = {ϕ ∈ H | f is Eψ,ϕ-integrable for each ψ ∈ H}
⊃

{
ϕ ∈ H

∣∣∣∣
∫

|f |2 dEϕ,ϕ < ∞
}

:= D̃(f,E).

Let E(H) denote the set of all observables of the quantum system, i.e the set of POMs
E : B(R) → L(H). For each observable E, we can define the moment operators E[k], k ∈ N,
of E via

E[k] =
∫

xk dE(x).

It should be noted that these operators are not necessarily densely defined.
Finally, let O(H) be the set of all (not necessarily bounded or even densely defined) linear

operators in H. For each A ∈ O(H) we denote by D(A) the domain of A. The symbols
Q and P stand for the standard position and momentum operators, i.e. (Qϕ)(x) = xϕ(x)

and (Pϕ)(x) = −i d
dx

ϕ(x), with their usual domains, and the spectral measures EQ and EP ,
respectively. Also, let [O, I ] ⊂ L(H) be the set of effects, i.e. operators A ∈ L(H) with
0 � A � I .
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2.1. The quantization

First of all, we assume that we have a fixed map � : U� → O(H), where U� is a subset of F .
We want to emphasize that, contrary to the traditional schemes, the operators �(f ) are not
regarded as the quantizations of the classical variables f ∈ U� .

Let k ∈ N, and consider a classical variable f ∈ F . Then the number
∫

xkµ(q,p)

(f −1(dx)) = f k(q, p), where µ(q,p) denotes the point measure at (q, p) ∈ R
2, gives the kth

moment of the measurement outcome distribution of the dynamical variable f in the state
(q, p). Similarly, the integral

∫
xk dEϕ,ϕ = 〈ϕ|E[k]ϕ〉 is the kth moment of the measurement

outcome distribution Eϕ,ϕ of the quantum observable E ∈ E(H) in the state ϕ. (Of course,
the vector ϕ must be in the domain of the operator E[k] for this to be valid.)

Now, we want to define a quantization Ef ∈ E(H) of a classical variable f ∈ U� by using
information on the classical moments f k , in such a way that the fixed map � transfers these
moments to the moments of the observable Ef , namely 〈ϕ|�(f k)ϕ〉 = 〈ϕ|Ef [k]ϕ〉 for each
ϕ (with ϕ belonging to the common domain of the operators). Of course, this happens if we
require that each f k belongs to U� and

�(f k) = Ef [k], k ∈ N. (1)

Hence, in order to apply this procedure, we have to solve an operator moment problem. In
addition, as mentioned in the introduction, a quantization procedure should always lead to a
unique Ef . This means that a given solution to the moment problem has to be determinate,
i.e. no other POM B(R) → L(H) may have the same moment sequence. We let Q� ⊂ U�

denote the set of variables for which these requirements are satisfied.
Hence, our quantization is the association Q� 	 f �→ Ef ∈ E(H), instead of the map

U� 	 f �→ �(f ) ∈ O(H). Note, in particular, that for a classical variable f ∈ Q� , the
operator �(f ) does not, in general, determine the quantization Ef .

Naturally, for different maps �, the sets Q� may be very different, in particular, Q� can
easily be empty, in which case the map is, of course, quite useless. For a (trivial) example,
consider the case where � is defined by �(f ) = A for all f ∈ F , with A ∈ O(H) fixed. If A

is bounded but not positive, then (1) is not satisfied by any f ∈ F and E ∈ E(H), because for
some ϕ ∈ H and any choice for f and E satisfying (1), we have

∫
x2 dEϕ,ϕ = 〈ϕ|Aϕ〉 < 0, a

contradiction. Hence Q� is empty in this case.
For a given map �, the natural task would be to investigate which variables can be

quantized by the ensuing scheme, i.e. which functions constitute the set Q� . Since this is
obviously a very difficult problem, we content ourselves with some simple, yet important
functions.

In [13], we demonstrated that for certain choices of the map �, the associated quantization
scheme actually produces meaningful results. Namely, in these cases the classical position
and momentum variables x : (q, p) �→ q and y : (q, p) �→ p indeed belong to Q� , and
the ensuing operators �(xk) and �(yk) can be determined. These operators turn out to be
polynomials of the position and momentum operators Q and P, respectively ([13, theorem 4]),
and the corresponding observables are unsharp position and momentum observables; neither
of them can be represented by a single selfadjoint operator. It was proven in [6] that the
moment problem of this example is indeed determinate. The realization of the map � used is
given in section 3.1.

2.2. Quantization of question variables

For any variable f ∈ F , one can consider the family of variables χB ◦ f , where B goes
through the Borel sets of the real line (and χB denotes the indicator function of the set B).
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Such variables are traditionally called questions [16], since χB ◦ f formalizes the question of
whether the value of f lies in the set B. Since each f ∈ F(R2) is determined by the totality
of such questions, one could try to quantize these questions instead of the variable itself. It
is then another problem whether the resulting family of simple observables can constitute a
single observable describing the quantization of the original variable f .

In any case, this approach leads us to consider the functions of the form χX, with
X ∈ B(R2), since all possible questions are of this form. Now the moment problem becomes
very simple, as the sequence in the relevant operator moment problem is the constant sequence(
�

(
χk

X

))
k∈N

.
Hence, we have the (seemingly trivial) moment problem

E[k] = A, k ∈ N, (2)

where A ∈ O(H) is fixed, and E ∈ E(H) is a solution. For a A ∈ [O, I ], let
EA : B(R) → L(H) be the two-valued POM supported in the set {0, 1} with EA({0}) = I −A

and EA({1}) = A. It is clear that EA is a solution for (2). The following observation is also
immediate.

Proposition 1. Let A ∈ O(H) be such that D(A) is dense in H. Then the moment problem
(2) has a solution if and only if A ∈ [O, I ]. In that case, the only solution is the operator
measure EA.

Proof. Let A ∈ O(H) be densely defined. We are left to prove that for a densely defined
A ∈ O(H), the existence of a solution E for (2) forces A to be bounded (with D(A) = H)
and 0 � A � I , and E to be EA. To that end, assume that A ∈ O(H) with D(A) dense, and
that E : B(R) → L(H) is a POM satisfying (2). Then D(A) = D(x2k, E) ⊂ D̃(xk, E) ⊂
D(xk, E) = D(A) for all k ∈ N, so D(A) = D(x2k, E) = D̃(xk, E) for all k ∈ N. Given
ϕ ∈ D(A), ‖ϕ‖ = 1, we have 0 �

∫
x2 dEϕ,ϕ = 〈ϕ|Aϕ〉, and

0 �
∫

(x − 〈ϕ|Aϕ〉)2 dEϕ,ϕ = 〈ϕ|Aϕ〉 − 〈ϕ|Aϕ〉2,

so that 0 � 〈ϕ|Aϕ〉 � 1, and we can define a discrete probability measure µϕ by the rules
{0} �→ 1 − 〈ϕ|Aϕ〉 and {1} �→ 〈ϕ|Aϕ〉. Now the measures Eϕ,ϕ and µϕ have the same
(constant) moment sequence for all ϕ ∈ D(A). This is possible only if µϕ = Eϕ,ϕ (see,
e.g. [7, theorem 2.2] and the remark belonging to it). It follows that 〈ϕ|E({0})ϕ〉 +
〈ϕ|E({1})ϕ〉 = 1, for all ϕ ∈ D(A), ‖ϕ‖ = 1. Since D(A) is dense, this implies E({0}) +
E({1}) = I , i.e. the operator measure E is supported in {0, 1}. But then D(A) = D(x,E) = H.
In addition, 〈ϕ|E({1})ϕ〉 = 〈ϕ|Aϕ〉 for ϕ ∈ D(A) so that A = E({1}). Hence, A is bounded,
with D(A) = H and 0 � A � I . Moreover, we have E = EA, so that the proof is
complete. �

Remark. Note that the moment problem (2) may have multiple solutions, if D(A) is not dense.
This is easily demonstrated by a simple example: Fix a ∈ R, 0 � a � 1, and a nontrivial
proper closed subspace M of H. Let A = aI |M, so that A ∈ O(H), with D(A) = M. Let
µ be the probability measure with {0} �→ 1 − a and {1} �→ a. For any probability measure
ν : B(R) → [0, 1], define a POM Eν by Eν(B) = µ(B)P + ν(B)(I − P), B ∈ B(R), where
P denotes the projection onto M. Now if the measure ν is chosen such that

∫
R

|x|dν(x) = ∞,
it is easy to verify that D(xk, Eν) = D̃(xk, Eν) = M, and

〈ψ |Eν[k]ϕ〉 =
∫

xk dµ〈ψ |ϕ〉 = a〈ψ |ϕ〉, ϕ ∈ M, ψ ∈ H, k ∈ N,
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so that Eν[k] = A for all k ∈ N. Hence, the moment problem (2) has (in fact, uncountably)
many different solutions in this case.

The preceding proposition suggests that in order to be able to quantize at least all the
questions, the quantization map � should be chosen such that χX ∈ U� and �(χX) ∈ [O, I ]
for all X ∈ B(R2). We note that, together with linearity and certain simple convergence
assertions, this condition actually forces the map X �→ �(χX) to coincide with a POM
G : B(R2) → L(H), and consequently, to have the property that �(f ) = ∫

f dG for each
bounded function f ∈ U� (see, e.g. [12, 13, 21]). Indeed, the realization discussed in
section 3.1. is of this type.

It should be emphasized that the selfadjoint operator �(χX) ∈ [O, I ] is not the observable
representing the quantization of the question χX, since its spectral measure does not satisfy
(2) with A = �(χX), except in the case where �(χX) is a projection. (As mentioned in the
proposition, the only POM satisfying (2) is the discrete POM EA.)

However, we do not require that � should map all questions to their traditional quantum
mechanical counterparts, i.e. projections. This is essential, since otherwise the POM
G:B(R2) → L(H) in the above-mentioned important case �(f ) = ∫

f dG would be
projection valued, and consequently all the quantized observables would be given as mutually
commuting spectral measures, which cannot be the case. Actually, even the presence of a
single nontrivial projection in the range of G would mean that the ensuing quantum system
of observables would have a nontrivial classical property. In fact, if �(χX) = G(X) is a
nontrivial ( �= O, I) projection for some X ∈ B(R2), then this projection commutes with any
of the quantized observables [20], which means that the quantization � leads to a superselection
rule for the resulting quantum system [11, 1].

2.3. Quantization and noiseless measurements

In quantum mechanics a measurement always determines an observable E ∈ E(H); in fact,
quantum observables can be viewed as equivalence classes of measurements (see, e.g. [8, 9, 2]).
The noise operator N(E) = E[2] − E[1]2 of an observable E can be taken to describe the
inherent inaccuracy in a measurement of E. Indeed, for any state ϕ (for which the quantities
involved are well defined) the variance Var(E, ϕ) (square of the standard deviation) of the
measurement outcome statistics of E can be written as

Var(E, ϕ) = Var(E[1], ϕ) + 〈ϕ|N(E)ϕ〉,
where Var(E[1], ϕ) is the variance of the corresponding outcome statistics of the spectral
measure of E[1], which is assumed to be selfadjoint. We say that a measurement is noiseless
if the noise operator of the associated observable E is zero.

As a measure for the degree of unsharpness of the measurement, the noise operator also
indicates to what extent the determined observable E fails to be sharp, i.e. a spectral measure.
Accordingly, we know from [13, theorem 5] that, in the case where E[1] happens to be
selfadjoint, the measurement is noiseless exactly when E is a spectral measure.

Consider now a quantization map � and assume that it is given by a POM G : B(R2) →
L(H). Let Ef be a quantization of a classical variable f by � and assume that it is projection
valued. Then any projection Ef (B), B ∈ B(R), would commute with any other quantized
observable Eg, g ∈ O� , and, therefore, Ef would constitute a superselection rule for the
quantum description, as noted above. Hence, if the quantized system of observables is a
proper quantum system, with no nontrivial classical properties, then the quantized system
admits no noiseless measurements.
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3. Two realizations for the map Γ

In order to produce an applicable (and meaningful) quantization scheme, the map � has to be
chosen properly. Rather that trying to investigate general conditions which could be required
for such a �, we consider, and compare, two specific ways to attempt to define it.

Let W(q, p) be the Weyl operators; W(q, p) = e
1
2 iqpe−iqP eipQ. If A ∈ L(H), define

�A : F(R2) → O(H) (formally) by

�A(f ) = 1

2π

∫
R

2
f (q, p)W(q, p)AW(q, p)∗ dq dp, f ∈ F(R2). (3)

This definition can be made precise in different ways. We consider the following two types.

3.1. Type (a)

Let A be positive, with Tr[A] = 1. We will call such an operator a generating operator, and
denote it by T. Choose U� = F . For any f ∈ F , we define �T (f ) as the operator determined
by

〈ψ |�T (f )ϕ〉 = 1

2π

∫
R

2
f (q, p)〈ψ |W(q, p)T W(q, p)∗ϕ〉 dq dp,

with ψ ∈ H and ϕ ∈ D(�T (f )), the domain D(�T (f )) ⊂ H of �T (f ) consisting of those
vectors ϕ ∈ H for which the above integral exists for all ψ ∈ H. It can be shown (see [13,
proposition 2]) that such an operator indeed exists. We used this realization in [13] to quantize
position and momentum variables, for a certain kind of generating operators T. The resulting
operators �T (xk) and �T (yk) were found to be densely defined and selfadjoint; in fact, they
are polynomials of degree k of Q and P, respectively.

The determination of the operators �T (f ) is simplified by the fact that we can, in many
cases, consider only the integrals over the probability distributions

(q, p) �→ P T
ϕ (q, p) = 〈ϕ|W(q, p)T W(q, p)∗ϕ〉.

In fact, the set D̃(�T (f )) of those ϕ ∈ H for which f 2 is integrable with respect to the
aforementioned density is a subspace of the domain D(�T (f )). Accordingly, some authors
define the operator integral (3) in that smaller set in the first place (see e.g. [22]). We prefer,
however, to use the natural domain D(�T (f )).

The map �T has the convenient property that �T (f ) is a bounded operator defined in all
of H, whenever f ∈ F(R2) is a bounded function.

Moreover, we recall that in the case where T is the one-dimensional projection determined
by the vector h0, with h0(x) = π− 1

4 e− 1
2 x2

(the ground state of the oscillator), the
probability distribution P T

ϕ is the Husimi distribution. Sometimes the associated quantization
f �→ �h0(f ) is called the Berezin quantization (see, e.g. [15]).

3.2. Type (b)

Take A = P , the parity operator ((Pϕ)(x) = ϕ(−x)), in which case the map �P is (formally)
the Weyl quantization. There are different ways to give meaning to the integral (3) in this
case, depending on the properties of the function f (see, e.g. [17, 5, 21, 3]). Most satisfactory
and general meaning is given in terms of distributions [3, 5], but then the resulting object
�P(f ) does not have to be an operator. One could also use the same definition for (3) as
in (a) above, since that definition works for any bounded operator A [13, proposition 2].
However, usually there seems to be no way to determine whether the domain of that operator
contains any nonzero vectors at all, except for f ∈ L1(R2) or f ∈ L2(R2), in which cases the
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corresponding operators are bounded (and, in the latter case, of Hilbert–Schmidt class; see the
pioneering work of Pool [17]).

The essential cause of the difficulties in dealing with the integral (3) for A = P is, of
course, the fact the Wigner function (q, p) �→ f W

ϕ (q, p) = 〈ϕ|W(q, p)PW(q, p)∗ϕ〉 of a
state ϕ is a probability density only when ϕ is h0 (modulo phase) [10], so that we do not have
a counterpart of D̃(�(f )) of (a) in this case. Another weakness of the Weyl quantization map
is that bounded functions need not lead to bounded operators (see, e.g. [3]).

For our (mainly illustrative) purposes, it suffices to adhere to a definition which works
in some cases (see, e.g. [21, proposition 2] and [5, proposition 8.31]). It is the following.
First, fix D ⊂ H to be the Schwarz space, i.e. the dense subspace consisting of infinitely
differentiable functions, whose derivatives fall of faster than any power of x at infinity. Let
U�P be the set of those f ∈ F(R2) for which there is an Rf ∈ O(H) with the domain D, such
that ∫

f (q, p)f W
ϕ (q, p) dq dp = 〈ϕ|Rf ϕ〉, ϕ ∈ D. (4)

Due to the assumption that D is dense (and by polarization), the (clearly symmetric) operator
Rf is uniquely determined. Hence, we can define �P(f ) for any f ∈ U�P as the closure of
Rf . It should be stressed that now the integral need not exist for all ϕ ∈ D(�P(f )), even if
the function f and the operator �P(f ) are bounded (see [21], the discussion after the proof
of proposition 2).

3.3. Application to the question variables

Consider then the quantization of the question variables with these two types of �. Since each
question χX is bounded, type (a) gives �T (χX) as a bounded operator defined in the whole
H, for all generating operators T. Moreover, it is well known that 0 � �T (χX) � I . Hence,
according to the proposition, each question χX can be quantized, and the resulting simple
observable is the POM supported in {0, 1} with {1} �→ �T (χX). Since the operator �T (χX)

is never a nontrivial projection (see [13, proposition 3], or [18, theorem 7]), this observable is
not a spectral measure. A fortiori, the totality of these simple observables constitute a proper
quantum system, and the map �T cannot produce any observables associated with noiseless
measurements.

Type (b), however, is more problematic, since the existence of the required operator Rf

is not a priori guaranteed, if the set X does not have finite Lebesgue measure. Werner has
shown [21, proposition 2] that if X is a sector in R

2, then Rf exists, and the resulting operator
�P(χX) is (everywhere defined) bounded and selfadjoint. Examples of these questions χX are
the ones of the form χB ◦ f , where f is the function f (q, p) = − q

p
, describing the arrival

time to the origin of a particle in place q < 0 with the momentum p > 0. However, in these
cases, the spectrum of �P(χX) is never a subset of [0, 1], so according to the proposition, our
moment problem has no solution in these cases.

If X ∈ B(R2) has a finite Lebesgue measure, then �P(χX) can be defined as a bounded
operator without difficulty. However, the operator need not be positive, and so our quantization
fails again. Hence, type (b) is usually not suitable for our scheme. However, in some cases it
works, as is demonstrated in the next section.

4. Position and momentum and the associated questions

Let x and y denote the classical position and momentum variables (q, p) �→ q and (q, p) �→ p,
respectively. For B ∈ B(R), the associated questions are χB ◦ x = χB×R and χB ◦ y = χR×B .
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We compare the applicability of the above two types of � in quantizing these basic
questions.

As mentioned in the preceding section, a map � of type (a) can always be applied to
produce a quantization of the above questions. In this case, type (b) can also be used. Let F
be the Fourier–Plancherel operator. Then, for any ϕ ∈ D, we have∫

B

∫
f W

ϕ (q, p) dp dq =
∫

B

ϕ(q)ϕ(q) dq,∫
B

∫
f W

ϕ (q, p) dq dp =
∫

B

(Fϕ)(p)(Fϕ)(p) dp,

as is well known. Hence, according to the definition, χB×R, χR×B ∈ U� , with �P(χB×R) =
EQ(B), and �P(χR×B) = EP (B).

Now, since EQ(B) and EP (B) are projections, it follows by the proposition that their
respective spectral measures {1} �→ EQ(B) and {1} �→ EP (B) are the quantizations of the
original questions χB ◦ x and χB ◦ y, respectively. Hence, we see that our scheme, when
implemented by using the Weyl map �P , gives precisely the traditional Weyl quantizations of
the questions concerning position and momentum. In particular, Weyl quantization is eligible
to produce noiseless measurements.

In a similar way one sees that each power of the position and momentum variables
themselves belong to U� , and that �P(xk) = Qk and �P(yk) = P k [5, proposition 8.31].
This means that the moment problem (1) indeed has a solution in both these cases, as well.
The solutions are, of course, the spectral measures EQ and EP , respectively. Now a spectral
measure is always determinate, i.e. no other normalized POM may have the same moment
sequence. (This follows, e.g. from [13, theorem 5].) Hence, the spectral measures EQ and EP

are the quantizations of position and momentum, in the scheme based on the map �P . This
is, again, the Weyl quantization.

Consider now a map �T of type (a) for some generating operator T. The operators
�T (χB×R) and �T (χR×B), which determine the quantizations of χB×R and χR×B , are bounded
operators determined by the integrals

〈ϕ|�T (χB×R)ϕ〉 =
∫

B

∫
P T

ϕ (q, p) dp dq =
∫

B

∑
n

tn(|ηn(−·)|2 ∗ |ϕ(·)|2)(q) dq,

〈ϕ|�T (χR×B)ϕ〉 =
∫

B

∫
P T

ϕ (q, p) dq dp =
∫

B

∑
n

tn(|(Fηn)(−·)|2 ∗ |(Fϕ)(·)|2)(p) dq,

where T = ∑
n tn|ηn〉〈ηn|. The calculation of these integrals is well known and can be

found, e.g. in [4, p 43]. The operators �T (χR×B) and �T (χB×R) are smeared versions of the
corresponding spectral projections EQ(B) and EP (B), as can be seen by the above integral
formulae, the smearing depending on the generating operator T. It should be mentioned that
the totality of the quantized questions

{
E�T (B◦x)

∣∣B ∈ B(R)
}

constitutes an observable in the

natural way: B �→ E�T (B◦x)({1}) = �T (B ◦ x) is a POM, which is known to be an unsharp
position observable. Similarly, B �→ E�T (B◦y)({1}) = �T (B ◦ y) is an unsharp momentum
observable. (Here we use the short notations B ◦ x := χB ◦ x, B ◦ y := χB ◦ y)

It was mentioned in [13] that in the case where T is the projection determined by an
oscillator eigenstate hn, n ∈ N, we have x, y ∈ Q�T , i.e. the position and momentum variables
themselves can be quantized. The resulting unique solutions to the moment problem (1) are
then precisely the above unsharp position and momentum observables. Unfortunately, we
have not been able to establish the uniqueness part of the moment problem (1) for a general
generating operator T.
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It is interesting to compare the two quantization methods a bit further. In both cases one
obtains the totalities of the quantized questions,{

E�P (B◦x)
∣∣B ∈ B(R)

}
and

{
E�P (B◦y)

∣∣B ∈ B(R)
}
,{

E�T (B◦x)
∣∣B ∈ B(R)

}
and

{
E�T (B◦y)

∣∣B ∈ B(R)
}
.

In both cases these totalities determine unique POMs; in the first case they are the spectral
measures EQ and EP of Q and P, in the second case they constitute the unsharp position and
momentum observables B �→ �T (B ◦ x) and B �→ �T (B ◦ y), respectively. In the first case
EQ and EP are also the quantizations of the classical variables x and y, whereas in the second
case this is known to be the case whenever the generating operator T is given by a Gaussian
hn, n ∈ N. In both cases the quantized observables are totally noncommutative. In the first
case they are also noncoexistent (that is, they cannot be measured togethre), whereas in the
second case they are always coexistent (that is, they can be measured together).
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